Trend Detection in Folksonomies
, , , и .
Proc. First International Conference on Semantics And Digital Media Technology (SAMT), том 4306 из LNCS, стр. 56-70. Heidelberg, Springer, (Декабрь 2006)

As the number of resources on the web exceeds by far the number ofdocuments one can track, it becomes increasingly difficult to remainup to date on ones own areas of interest. The problem becomes moresevere with the increasing fraction of multimedia data, from whichit is difficult to extract some conceptual description of theircontents.One way to overcome this problem are social bookmark tools, whichare rapidly emerging on the web. In such systems, users are settingup lightweight conceptual structures called folksonomies, andovercome thus the knowledge acquisition bottleneck. As more and morepeople participate in the effort, the use of a common vocabularybecomes more and more stable. We present an approach for discoveringtopic-specific trends within folksonomies. It is based on adifferential adaptation of the PageRank algorithm to the triadichypergraph structure of a folksonomy. The approach allows for anykind of data, as it does not rely on the internal structure of thedocuments. In particular, this allows to consider different datatypes in the same analysis step. We run experiments on a large-scalereal-world snapshot of a social bookmarking system.
  • @stumme
  • @hotho
  • @iteg
  • @benz
  • @jaeschke
  • @stephandoerfel
К этой публикации ещё не было создано рецензий.

распределение оценок
средняя оценка пользователей0,0 из 5.0 на основе 0 рецензий
    Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)