Hotho, A.; Jäschke, R.; Schmitz, C. & Stumme, G.: FolkRank: A Ranking Algorithm for Folksonomies. Proc. FGIR 2006. 2006
[Volltext]

Hotho, A.; Jäschke, R.; Schmitz, C. & Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y. & Domingue, J. (Hrsg.): The Semantic Web: Research and Applications. Heidelberg: Springer, 2006 (LNAI 4011), S. 411-426

Hotho, A.; J�schke, R.; Schmitz, C. & Stumme, G.: Information Retrieval in Folksonomies: Search and Ranking. In: Sure, Y. & Domingue, J. (Hrsg.): The Semantic Web: Research and Applications. Heidelberg: Springer, 2006 (LNAI 4011), S. 411-426

Hotho, A.; Jäschke, R.; Schmitz, C. & Stumme, G.: Trend Detection in Folksonomies. In: Avrithis, Y. S.; Kompatsiaris, Y.; Staab, S. & O'Connor, N. E. (Hrsg.): Proc. First International Conference on Semantics And Digital Media Technology (SAMT) . Heidelberg: Springer, 2006 (LNCS 4306), S. 56-70
[Volltext]

ne way to overcome this problem are social bookmark tools, which
e rapidly emerging on the web. In such systems, users are setting
lightweight conceptual structures called folksonomies, and
ercome thus the knowledge acquisition bottleneck. As more and more
ople participate in the effort, the use of a common vocabulary
comes more and more stable. We present an approach for discovering
pic-specific trends within folksonomies. It is based on a
fferential adaptation of the PageRank algorithm to the triadic
pergraph structure of a folksonomy. The approach allows for any
nd of data, as it does not rely on the internal structure of the
cuments. In particular, this allows to consider different data
pes in the same analysis step. We run experiments on a large-scale
al-world snapshot of a social bookmarking system.