Morstatter, Fred, ürgen Pfeffer, J, Liu, Huan, Carley, Kathleen M, Is the Sample Good Enough? Comparing Data from Twitter’s Streaming API with Twitter’s Firehose (2013).
Bullock, Beate Navarro, Jäschke, Robert, Hotho, Andreas: Tagging data as implicit feedback for learning-to-rank. In: Proceedings of the ACM WebSci'11, 2011
Hotho, Andreas, Ulslev Pedersen, Rasmus, Wurst, Michael, Ubiquitous Data, in: Lecture Notes in Computer Science 6202 (2010), S. 61--74.
Song, Chaoming, Qu, Zehui, Blumm, Nicholas, Barabási, Albert-László, Limits of Predictability in Human Mobility, in: Science 327 5968 (2010), S. 1018-1021.
Atzmueller, Martin, Lemmerich, Florian, Krause, Beate, Hotho, Andreas ; Knobbe, Johannes Fürnkranz Arno: {Towards Understanding Spammers - Discovering Local Patterns for Concept Characterization and Description}. In: Proc. LeGo-09: From Local Patterns to Global Models, Workshop at the 2009 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2009. - accepted
Atzmueller, Martin, Lemmerich, Florian, Krause, Beate, Hotho, Andreas: Who are the Spammers? Understandable Local Patterns for Concept Description. In: 7th Conference on Computer Methods and Systems. Krakow, Poland, 2009. - ISBN 83-916420-5-4
Krause, Beate, Schmitz, Christoph, Hotho, Andreas, Stumme, Gerd: The Anti-Social Tagger - Detecting Spam in Social Bookmarking Systems. In: AIRWeb '08: Proceedings of the 4th international workshop on Adversarial information retrieval on the web. New York, NY, USA : ACM, 2008. - ISBN 978-1-60558-159-0, S. 61--68
Berendt, B., Hotho, A., Mladenic, D., Semeraro, G. From Web to Social Web: Discovering and Deploying User and Content Profiles , Bd. 4736: LNCS.
Wurst, Michael, Morik, Katharina, Distributed feature extraction in a p2p setting: a case study, in: Future Gener. Comput. Syst. 23 1 (2007), S. 69--75.
Baeza-Yates, Ricardo, Calderón-Benavides, Liliana, González-Caro, Cristina, The Intention Behind Web Queries, in: String Processing and Information Retrieval (2006), S. 98--109.
Balakrishnan, Hemant, Deo, Narsingh ; Menezes, Ronaldo: Discovering communities in complex networks.. In: ACM Southeast Regional Conference : ACM, 2006. - ISBN 1-59593-315-8, S. 280-285
Buitelaar, Paul, Cimiano, Philipp, Magnini, Bernardo Ontology Learning from Text: Methods, Evaluation and Applications, Bd. 123: Frontiers in Artificial Intelligence.
Weiss, Sholom M., Indurkhya, Nitin, Zhang, T. Text Mining. Predictive Methods for Analyzing Unstructured Information, 1. Aufl..
Baldi, Pierre, Frasconi, Paolo, Smyth, Padhraic, Art. Modeling the Internet and the Web: Probabilistic Methods and Algorithms, in: Modeling the Internet and the Web: Probabilistic Methods and Algorithms 2003.
Dhillon, Inderjit S., Modha, Dharmendra S., Spangler, W. Scott, Class visualization of high-dimensional data with applications, in: Computational Statistics \& Data Analysis 41 1 (2002), S. 59-90.
Thrun, Sebastian, Burgard, Wolfram, Fox, Dieter Probabilistic Robotics (Intelligent Robotics and Autonomous Agents).
Web Usage Analysis and User Profiling, International WEBKDD'99 Workshop, San Diego, California, USA, August 15, 1999, Revised Papers s. 1836 : Springer, 2000. - ISBN 3-540-67818-2
Pyle, Dorian Data Preparation for Data Mining.
Fayyad, Usama M., Piatetsky-Shapiro, Gregory, Smyth, Padhraic, From Data Mining to Knowledge Discovery: An Overview.Advances in Knowledge Discovery and Data Mining 1996, S. 1-34.
Flajolet, Philippe, Martin, G. Nigel, Probabilistic Counting Algorithms for Data Base Applications, in: Journal of Computer and System Sciences 31 2 (1985), S. 182-209.