Arthur, David, Vassilvitskii, Sergei: k-means++: the advantages of careful seeding. In: SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Philadelphia, PA, USA : Society for Industrial and Applied Mathematics, 2007. - ISBN 978-0-898716-24-5, S. 1027--1035
Bickel, S., Scheffer, T.: Multi--View Clustering. In: Proceedings of the IEEE International Conference on Data Mining, 2004
Savaresi, Sergio M., Boley, Daniel, A comparative analysis on the bisecting K-means and the PDDP clustering algorithms., in: Intell. Data Anal. 8 4 (2004), S. 345-362.
Hotho, A, Staab, S., Stumme, G.: Wordnet improves text document clustering. In: Proc. SIGIR Semantic Web Workshop. Toronto, 2003
Zhao, Ying, Karypis, George: Evaluation of hierarchical clustering algorithms for document datasets. In: CIKM '02: Proceedings of the eleventh international conference on Information and knowledge management. New York, NY, USA : ACM Press, 2002. - ISBN 1-58113-492-4, S. 515--524
Hotho, Andreas, Maedche, Alexander, Staab, Steffen: Text Clustering Based on Good Aggregations. In: ICDM '01: Proceedings of the 2001 IEEE International Conference on Data Mining. Washington, DC, USA : IEEE Computer Society, 2001. - ISBN 0-7695-1119-8, S. 607--608
Wagstaff, Kiri, Cardie, Claire, Rogers, Seth, Schrödl, Stefan: Constrained K-means Clustering with Background Knowledge.. In: ICML, 2001, S. 577-584
Kirsten, Mathias, Wrobel, Stefan ; Cussens, James, Frisch, Alan M.: Extending K-Means Clustering to First-Order Representations. 1866. In: Inductive Logic Programming, 10th International Conference, ILP 2000, London, UK, July 24-27, 2000, Proceedings : Springer, 2000 (Lecture Notes in Computer Science). - ISBN 3-540-67795-X, S. 112-129
Pelleg, Dan, Moore, Andrew: ${X}$-means: {E}xtending ${K}$-means with Efficient Estimation of the Number of Clusters. In: Proc. 17th International Conf. on Machine Learning : Morgan Kaufmann, San Francisco, CA, 2000, S. 727--734
Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: KDD Workshop on Text Mining, 2000
Steinbach, M., Karypis, G., Kumar, V.: A Comparison of Document Clustering Techniques. In: KDD Workshop on Text Mining, 2000
Pelleg, Dan, Moore, Andrew: Accelerating Exact k -means Algorithms with Geometric Reasoning. In: Knowledge Discovery and Data Mining, 1999, S. 277-281
Bradley, Paul S., Fayyad, Usama M.: Refining initial points for {K}-{M}eans clustering. In: Proc. 15th International Conf. on Machine Learning : Morgan Kaufmann, San Francisco, CA, 1998, S. 91--99
Hartigan, J. Clustering Algorithms.
MacQueen, J. B. ; Cam, L. M. Le, Neyman, J.: Some Methods for Classification and Analysis of MultiVariate Observations. 1. In: Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability : University of California Press, 1967, S. 281-297
Ball, G. ; Hall, D. ; Stanford Research Institute (Hrsg.): ISODATA: A novel method of data analysis and pattern classification. Menlo Park, 1965
Forgy, E., Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification, in: Biometrics 21 3 (1965), S. 768-769.