Arthur, D. & Vassilvitskii, S. (2007). k-means++: the advantages of careful seeding. SODA '07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (p./pp. 1027--1035), Philadelphia, PA, USA: Society for Industrial and Applied Mathematics. ISBN: 978-0-898716-24-5

Bickel, S. & Scheffer, T. (2004). Multi--View Clustering. Proceedings of the IEEE International Conference on Data Mining, .

Savaresi, S. M. & Boley, D. (2004). A comparative analysis on the bisecting K-means and the PDDP clustering algorithms.. Intell. Data Anal., 8, 345-362.

Hotho, A., Staab, S. & Stumme, G. (2003). Wordnet improves text document clustering. Proc. SIGIR Semantic Web Workshop, Toronto.

Zhao, Y. & Karypis, G. (2002). Evaluation of hierarchical clustering algorithms for document datasets. CIKM '02: Proceedings of the eleventh international conference on Information and knowledge management (p./pp. 515--524), New York, NY, USA: ACM Press. ISBN: 1-58113-492-4

Hotho, A., Maedche, A. & Staab, S. (2001). Text Clustering Based on Good Aggregations. ICDM '01: Proceedings of the 2001 IEEE International Conference on Data Mining (p./pp. 607--608), Washington, DC, USA: IEEE Computer Society. ISBN: 0-7695-1119-8

Wagstaff, K., Cardie, C., Rogers, S. & Schrödl, S. (2001). Constrained K-means Clustering with Background Knowledge.. ICML (p./pp. 577-584), .

Kirsten, M. & Wrobel, S. (2000). Extending K-Means Clustering to First-Order Representations. In J. Cussens & A. M. Frisch (eds.), Inductive Logic Programming, 10th International Conference, ILP 2000, London, UK, July 24-27, 2000, Proceedings (p./pp. 112-129), : Springer. ISBN: 3-540-67795-X

Pelleg, D. & Moore, A. (2000). $X$-means: Extending $K$-means with Efficient Estimation of the Number of Clusters. Proc. 17th International Conf. on Machine Learning (p./pp. 727--734), : Morgan Kaufmann, San Francisco, CA.

Steinbach, M., Karypis, G. & Kumar, V. (2000). A comparison of document clustering techniques. KDD Workshop on Text Mining, .

Steinbach, M., Karypis, G. & Kumar, V. (2000). A Comparison of Document Clustering Techniques. KDD Workshop on Text Mining, .

Pelleg, D. & Moore, A. (1999). Accelerating Exact k -means Algorithms with Geometric Reasoning. Knowledge Discovery and Data Mining (p./pp. 277-281), .

Bradley, P. S. & Fayyad, U. M. (1998). Refining initial points for K-Means clustering. Proc. 15th International Conf. on Machine Learning (p./pp. 91--99), : Morgan Kaufmann, San Francisco, CA.

Hartigan, J. (1975). Clustering Algorithms. John Wiley and Sons, New York.

MacQueen, J. B. (1967). Some Methods for Classification and Analysis of MultiVariate Observations. In L. M. L. Cam & J. Neyman (eds.), Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability (p./pp. 281-297), : University of California Press.

Ball, G. & Hall, D. (1965). ISODATA: A novel method of data analysis and pattern classification (). Stanford Research Institute .

Forgy, E. (1965). Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of Classification. Biometrics, 21, 768-769.