Explaining Text Clustering Results using Semantic Structures
, , und .
Knowledge Discovery in Databases: PKDD 2003, 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Volume 2838 von LNAI, Seite 217-228. Heidelberg, Springer, (2003)

Common text clustering techniques offer rather poor capabilities for explaining to their users why a particular result has been achieved. They have the disadvantage that they do not relate semantically nearby terms and that they cannot explain how resulting clusters are related to each other. In this paper, we discuss a way of integrating a large thesaurus and the computation of lattices of resulting clusters into common text clustering in order to overcome these two problems. As its major result, our approach achieves an explanation using an appropriate level of granularity at the concept level as well as an appropriate size and complexity of the explaining lattice of resulting clusters.
  • @hotho
  • @stumme
  • @jaeschke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.