Leveraging Publication Metadata and Social Data into FolkRank for Scientific Publication Recommendation
, , , и .
Proceedings of the 4th ACM RecSys workshop on Recommender systems and the social web, стр. 9--16. New York, NY, USA, ACM, (Сентябрь 2012)

The ever-growing flood of new scientific articles requires novel retrieval mechanisms. One means for mitigating this instance of the information overload phenomenon are collaborative tagging systems, that allow users to select, share and annotate references to publications. These systems employ recommendation algorithms to present to their users personalized lists of interesting and relevant publications. In this paper we analyze different ways to incorporate social data and metadata from collaborative tagging systems into the graph-based ranking algorithm FolkRank to utilize it for recommending scientific articles to users of the social bookmarking system BibSonomy. We compare the results to those of Collaborative Filtering, which has previously been applied for resource recommendation.
  • @hotho
  • @stumme
  • @jaeschke
  • @stephandoerfel
К этой публикации ещё не было создано рецензий.

распределение оценок
средняя оценка пользователей0,0 из 5.0 на основе 0 рецензий
    Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)