Crowdsourced Databases: Query Processing with People
, , , und .
Proceedings of the 5th Biennial Conference on Innovative Data Systems Research, Seite 211--214. CIDR, (Januar 2011)

Amazon's Mechanical Turk (\MTurk") service allows users to post short tasks (\HITs") that other users can receive a small amount of money for completing. Common tasks on the system include labelling a collection of images, com- bining two sets of images to identify people which appear in both, or extracting sentiment from a corpus of text snippets. Designing a work ow of various kinds of HITs for ltering, aggregating, sorting, and joining data sources together is common, and comes with a set of challenges in optimizing the cost per HIT, the overall time to task completion, and the accuracy of MTurk results. We propose Qurk, a novel query system for managing these work ows, allowing crowd- powered processing of relational databases. We describe a number of query execution and optimization challenges, and discuss some potential solutions.
  • @jaeschke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.