A Generic Approach to Topic Models
Machine Learning and Knowledge Discovery in Databases (2009)

This article contributes a generic model of topic models. To define the problem space, general characteristics for this class of models are derived, which give rise to a representation of topic models as “mixture networks”, a domain-specific compactalternative to Bayesian networks. Besides illustrating the interconnection of mixtures in topic models, the benefit of thisrepresentation is its straight-forward mapping to inference equations and algorithms, which is shown with the derivation andimplementation of a generic Gibbs sampling algorithm.
  • @folke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.