Towards Enhancing Deep Active Learning with Weak Supervision and Constrained Clustering
, , , , , , und .
Workshop on Interactive Adapative Learning (IAL), ECML PKDD, Seite 65--73. (2023)

Three fields revolving around the question of how to cope with limited amounts of labeled data are Deep Active Learning (DAL), deep Constrained Clustering (CC), and Weakly Supervised Learning (WSL). DAL tackles the problem by adaptively posing the question of which data samples to annotate next in order to achieve the best incremental learning improvement, although it suffers from several limitations that hinder its deployment in practical settings. We point out how CC algorithms and WSL could be employed to overcome these limitations and increase the practical applicability of DAL research. Specifically, we discuss the opportunities to use the class discovery capabilities of CC and the possibility of further reducing human annotation efforts by utilizing WSL. We argue that the practical applicability of DAL algorithms will benefit from employing CC and WSL methods for the learning and labeling process. We inspect the overlaps between the three research areas and identify relevant and exciting research questions at the intersection of these areas.
  • @04068750
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.