Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments
, , , и .
17th Conference on Uncertainty in Artificial Intelligence, стр. 437--444. Seattle, Washington, (Август 2001)

Recommender systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommenders, content-based recommenders, and a few hybrid systems. We propose a unified probabilistic framework for merging collaborative and content-based recommendations. We extend Hofmann's aspect model to incorporate three-way co-occurrence data among users, items, and item content. The relative influence of collaboration data versus content data is not...
  • @hotho
  • @jaeschke
К этой публикации ещё не было создано рецензий.

распределение оценок
средняя оценка пользователей0,0 из 5.0 на основе 0 рецензий
    Пожалуйста, войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)