Low-order tensor decompositions for social tagging recommendation
, , , , und .
Proceedings of the fourth ACM international conference on Web search and data mining, Seite 695--704. New York, NY, USA, ACM, (2011)

Social tagging recommendation is an urgent and useful enabling technology for Web 2.0. In this paper, we present a systematic study of low-order tensor decomposition approach that are specifically targeted at the very sparse data problem in tagging recommendation problem. Low-order polynomials have low functional complexity, are uniquely capable of enhancing statistics and also avoids over-fitting than traditional tensor decompositions such as Tucker and Parafac decompositions. We perform extensive experiments on several datasets and compared with 6 existing methods. Experimental results demonstrate that our approach outperforms existing approaches.
  • @hotho
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.