Resource Recommendation in Collaborative Tagging Applications
, , , und .
E-Commerce and Web Technologies, Volume 61 von Lecture Notes in Business Information Processing, Springer, Berlin/Heidelberg, (2010)

Collaborative tagging applications enable users to annotate online resources with user-generated keywords. The collection of these annotations and the way they connect users and resources produce a rich information space for users to explore. However the size, complexity and chaotic structure of these systems hamper users as they search for information. Recommenders can assist the user by suggesting resources, tags or even other users. Previous work has demonstrated that an integrative approach which exploits all three dimensions of the data (users, resources, tags) produce superior results in tag recommendation. We extend this integrative philosophy to resource recommendation. Specifically, we propose an approach for designing weighted linear hybrid resource recommenders. Through extensive experimentation on two large real world datasets, we show that the hybrid recommenders surpass the effectiveness of their constituent components while inheriting their simplicity, computational efficiency and explanatory capacity. We further introduce the notion of information channels which describe the interaction of the three dimensions. Information channels can be used to explain the effectiveness of individual recommenders or explain the relative contribution of components in the hybrid recommender.
  • @jaeschke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.