Self-Adaptive Charging Management in Electric Vehicle Infrastructures based on Reinforcement Learning

. Organic Computing -- Doctoral Dissertation Colloquium 2022, kassel university press, (accepted).(2022)


Electromobility plays an increasingly important role in the energy transition. Electric vehicle charging poses challenges to the electricity grid due to high peak demand situations. Therefore, it is crucial to leverage the vehicle's flexibility when charging can be delayed. Conventional charging management systems cannot adapt to frequently changing conditions such as fluctuating renewable energy output, electricity prices and user behavior. In this article, we investigate the application of reinforcement learning approaches for self-adaptive charging management. In particular, we identify challenges regarding realistic environments and adaption to varying topologies and connections among charging stations. We describe related approaches and propose ideas and planned experiments to overcome these problems by utilizing generative models and graph neural networks.

Links und Ressourcen

Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation