Text categorization with support vector machines: learning with many relevant features

. Proceedings of ECML-98, 10th European Conference on Machine Learning, 1398, стр. 137--142. Chemnitz, DE, Springer Verlag, Heidelberg, DE, (1998)


This paper explores the user of Support Vector machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety of different learning tasks. Furthermore, they are fully automatic, eliminating the need for manuar parameter tuning.

Линки и ресурсы

ключ BibTeX:
искать в:

Комментарии и рецензии  

Комментарии, или рецензии отсутствуют. Вы можете их написать!


Цитировать эту публикацию