Text categorization with support vector machines: learning with many relevant features

. Proceedings of ECML-98, 10th European Conference on Machine Learning, 1398, page 137--142. Chemnitz, DE, Springer Verlag, Heidelberg, DE, (1998)


This paper explores the user of Support Vector machines (SVMs) for learning text classifiers from examples. It analyzes the particular properties of learning with text data and identifies, why SVMs are appropriate for this task. Empirical results support the theoretical findings. SVMs achieve substantial improvements over the currently best performing methods and they behave robustly over a variety of different learning tasks. Furthermore, they are fully automatic, eliminating the need for manuar parameter tuning.

Links and resources

BibTeX key:
search on:

Comments and Reviews  

There is no review or comment yet. You can write one!


Cite this publication