EAGER: extending automatically gazetteers for entity recognition

, , , , und . Proceedings of the 3rd Workshop on the People's Web Meets NLP: Collaboratively Constructed Semantic Resources and their Applications to NLP, Seite 29--33. Association for Computational Linguistics, (Juli 2012)


Key to named entity recognition, the manual gazetteering of entity lists is a costly, errorprone process that often yields results that are incomplete and suffer from sampling bias. Exploiting current sources of structured information, we propose a novel method for extending minimal seed lists into complete gazetteers. Like previous approaches, we value W IKIPEDIA as a huge, well-curated, and relatively unbiased source of entities. However, in contrast to previous work, we exploit not only its content, but also its structure, as exposed in DBPEDIA. We extend gazetteers through Wikipedia categories, carefully limiting the impact of noisy categorizations. The resulting gazetteers easily outperform previous approaches on named entity recognition.

Links und Ressourcen

Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation