@jaeschke

Optimizing web search using web click-through data

, , , , , , und . CIKM '04: Proceedings of the thirteenth ACM international conference on Information and knowledge management, Seite 118--126. New York, NY, USA, ACM, (2004)

Zusammenfassung

The performance of web search engines may often deteriorate due to the diversity and noisy information contained within web pages. User click-through data can be used to introduce more accurate description (metadata) for web pages, and to improve the search performance. However, noise and incompleteness, sparseness, and the volatility of web pages and queries are three major challenges for research work on user click-through log mining. In this paper, we propose a novel iterative reinforced algorithm to utilize the user click-through data to improve search performance. The algorithm fully explores the interrelations between queries and web pages, and effectively finds "virtual queries" for web pages and overcomes the challenges discussed above. Experiment results on a large set of MSN click-through log data show a significant improvement on search performance over the naive query log mining algorithm as well as the baseline search engine.

Beschreibung

Optimizing web search using web click-through data

Links und Ressourcen

URL:
BibTeX-Schlüssel:
1031192
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation