@article{moncalvo2006cantharelloid, abstract = {We reassessed the circumscription of the cantharelloid clade and identified monophyletic groups by using nLSU, nSSU, mtSSU and RPB2 sequence data. Results agreed with earlier studies that placed the genera Cantharellus, Craterellus, Hydnum, Clavulina, Membranomyces, Multiclavula, Sistotrema, Botryobasidium and the family Ceratobasidiaceae in that clade. Phylogenetic analyses support monophyly of all genera except Sistotrema, which was highly polyphyletic. Strongly supported monophyletic groups were: (i) Cantharellus-Craterellus, Hydnum, and the Sistotrema confluens group; (ii) Clavulina-Membranomyces and the S. brinkmannii-oblongisporum group, with Multiclavula being possibly sister of that clade; (iii) the Sistotrema eximum-octosporum group; (iv) Sistotrema adnatum and S. coronilla. Positions of Sistotrema raduloides and S. athelioides were unresolved, as were basal relationships. Botryobasidium was well supported as the sister taxon of all the above taxa, while Ceratobasidiaceae was the most basal lineage. The relationship between Tulasnella and members of the cantharelloid clade will require further scrutiny, although there is cumulative evidence that they are probably sister groups. The rates of molecular evolution of both the large and small nuclear ribosomal RNA genes (nuc-rDNA) are much higher in Cantharellus, Craterellus and Tulasnella than in the other cantharelloid taxa, and analyses of nuc-rDNA sequences strongly placed Tulasnella close to Cantharellus-Craterellus. In contrast analyses with RPB2 and mtSSU sequences placed Tulasnella at the base of the cantharelloid clade. Our attempt to reconstruct a "supertree" from tree topologies resulting from separate analyses that avoided phylogenetic reconstruction problems associated with missing data and/or unalignable sequences proved unsuccessful.}, author = {Moncalvo, J. M. and Nilsson, R. H. and Koster, B. and Dunham, S. M. and Bernauer, T. and Matheny, P. B. and Porter, T. M. and Margaritescu, S. and Weiss, M. and Garnica, S. and Danell, E. and Langer, G. and Langer, E. and Larsson, E. and Larsson, K. H. and Vilgalys, R.}, interhash = {f9a3bfd95aa0e748cadbeae6bd364dfa}, intrahash = {8df79eade21e47a9a7d1a68e31ae634f}, journal = {Mycologia}, month = {Nov-Dec}, number = 6, pages = {937-948}, title = {The cantharelloid clade: dealing with incongruent gene trees and phylogenetic reconstruction methods}, url = {/brokenurl#://000245858800011}, volume = 98, year = 2006 } @article{larsson2006hymenochaetales, abstract = {The hymenochaetoid clade is dominated by wood-decaying species previously classified in the artificial families Corticiaceae, Polyporaceae and Stereaceae. The majority of these species cause a white rot. The polypore Bridgeoporus and several corticioid species with inconspicuous basidiomata, live in association with brown-rotted wood, but their nutritional strategy is Dot known. Mycorrhizal habit is reported for Coltricia perennis but needs confirmation. A surprising element in the hymenochaetoid clade is a group of small white to brightly pigmented agarics earlier classified in Omphalina. They form a subclade together with some similarly colored stipitate stereoid and corticioid species. Several are associated with living mosses or one-celled green algae. Hyphoderma pratermissum and some related corticioid species have specialized organs for trapping and killing nematodes as a source of nitrogen. There are no unequivocal morphological synapomorphies known for the hymenochaetoid clade. However almost all species examined ultrastructurally have dolipore septa with continuous parenthesomes while perforate parenthesomes is the normal condition for other homobasidiomycete clades. The agaricoid Hymenochaetales have not been examined. Within Hymenochaetales the Hymenochaetaceae forms a distinct clade but unfortunately all morphological characters supporting Hymenochaetaceae also are found in species outside the clade. Other subclades recovered by the molecular phylogenetic analyses are less uniform, and the overall resolution within the nuclear LSU tree presented here is still unsatisfactory.}, author = {Larsson, K. H. and Parmasto, E. and Fischer, M. and Langer, E. and Nakasone, K. K. and Redhead, S. A.}, interhash = {3054ec8626c9b80dde9de8cfe7ed1776}, intrahash = {88cf489dcf5b1600f55d17eb700aba0c}, journal = {Mycologia}, month = {Nov-Dec}, number = 6, pages = {926-936}, title = {Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade}, url = {/brokenurl#://000245858800010}, volume = 98, year = 2006 }