@inproceedings{jaeschke2009testing, abstract = {The challenge to provide tag recommendations for collaborative tagging systems has attracted quite some attention of researchers lately. However, most research focused on the evaluation and development of appropriate methods rather than tackling the practical challenges of how to integrate recommendation methods into real tagging systems, record and evaluate their performance. In this paper we describe the tag recommendation framework we developed for our social bookmark and publication sharing system BibSonomy. With the intention to develop, test, and evaluate recommendation algorithms and supporting cooperation with researchers, we designed the framework to be easily extensible, open for a variety of methods, and usable independent from BibSonomy. Furthermore, this paper presents a �rst evaluation of two exemplarily deployed recommendation methods.}, address = {New York, NY, USA}, author = {Jäschke, Robert and Eisterlehner, Folke and Hotho, Andreas and Stumme, Gerd}, booktitle = {RecSys '09: Proceedings of the 2009 ACM Conference on Recommender Systems}, interhash = {440fafda1eccf4036066f457eb6674a0}, intrahash = {1320904b208d53bd5d49e751cbfcc268}, location = {New York, NY, USA}, note = {(to appear)}, publisher = {ACM}, title = {Testing and Evaluating Tag Recommenders in a Live System}, year = 2009 } @phdthesis{jaschke2011formal, address = {Heidelberg}, author = {Jäschke, Robert}, interhash = {dcb2cd1cd72ae45d77c4d8755d199405}, intrahash = {bad02a0bbbf066907ecdee0ecaf9fb80}, isbn = {1-60750-707-2}, publisher = {Akad. Verl.-Ges. AKA}, series = {Dissertations in artificial intelligence}, title = {Formal concept analysis and tag recommendations in collaborative tagging systems}, url = {http://opac.bibliothek.uni-kassel.de/DB=1/PPN?PPN=231779038}, volume = 332, year = 2011 } @phdthesis{jaschke2011formal, address = {Heidelberg}, author = {Jäschke, Robert}, interhash = {dcb2cd1cd72ae45d77c4d8755d199405}, intrahash = {bad02a0bbbf066907ecdee0ecaf9fb80}, isbn = {1-60750-707-2}, publisher = {Akad. Verl.-Ges. AKA}, series = {Dissertations in artificial intelligence}, title = {Formal concept analysis and tag recommendations in collaborative tagging systems}, url = {http://opac.bibliothek.uni-kassel.de/DB=1/PPN?PPN=231779038}, volume = 332, year = 2011 } @inproceedings{doerfel2013analysis, abstract = {Since the rise of collaborative tagging systems on the web, the tag recommendation task -- suggesting suitable tags to users of such systems while they add resources to their collection -- has been tackled. However, the (offline) evaluation of tag recommendation algorithms usually suffers from difficulties like the sparseness of the data or the cold start problem for new resources or users. Previous studies therefore often used so-called post-cores (specific subsets of the original datasets) for their experiments. In this paper, we conduct a large-scale experiment in which we analyze different tag recommendation algorithms on different cores of three real-world datasets. We show, that a recommender's performance depends on the particular core and explore correlations between performances on different cores.}, acmid = {2507222}, address = {New York, NY, USA}, author = {Doerfel, Stephan and Jäschke, Robert}, booktitle = {Proceedings of the 7th ACM conference on Recommender systems}, doi = {10.1145/2507157.2507222}, interhash = {3eaf2beb1cdad39b7c5735a82c3338dd}, intrahash = {aa4b3d79a362d7415aaa77625b590dfa}, isbn = {978-1-4503-2409-0}, location = {Hong Kong, China}, numpages = {4}, pages = {343--346}, publisher = {ACM}, series = {RecSys '13}, title = {An analysis of tag-recommender evaluation procedures}, url = {https://www.kde.cs.uni-kassel.de/pub/pdf/doerfel2013analysis.pdf}, year = 2013 } @article{landia2013deeper, abstract = {The information contained in social tagging systems is often modelled as a graph of connections between users, items and tags. Recommendation algorithms such as FolkRank, have the potential to leverage complex relationships in the data, corresponding to multiple hops in the graph. We present an in-depth analysis and evaluation of graph models for social tagging data and propose novel adaptations and extensions of FolkRank to improve tag recommendations. We highlight implicit assumptions made by the widely used folksonomy model, and propose an alternative and more accurate graph-representation of the data. Our extensions of FolkRank address the new item problem by incorporating content data into the algorithm, and significantly improve prediction results on unpruned datasets. Our adaptations address issues in the iterative weight spreading calculation that potentially hinder FolkRank's ability to leverage the deep graph as an information source. Moreover, we evaluate the benefit of considering each deeper level of the graph, and present important insights regarding the characteristics of social tagging data in general. Our results suggest that the base assumption made by conventional weight propagation methods, that closeness in the graph always implies a positive relationship, does not hold for the social tagging domain.}, author = {Landia, Nikolas and Doerfel, Stephan and Jäschke, Robert and Anand, Sarabjot Singh and Hotho, Andreas and Griffiths, Nathan}, interhash = {e8095b13630452ce3ecbae582f32f4bc}, intrahash = {e585a92994be476480545eb62d741642}, journal = {cs.IR}, title = {Deeper Into the Folksonomy Graph: FolkRank Adaptations and Extensions for Improved Tag Recommendations}, url = {http://arxiv.org/abs/1310.1498}, volume = {1310.1498}, year = 2013 } @article{landia2013deeper, abstract = {The information contained in social tagging systems is often modelled as a graph of connections between users, items and tags. Recommendation algorithms such as FolkRank, have the potential to leverage complex relationships in the data, corresponding to multiple hops in the graph. We present an in-depth analysis and evaluation of graph models for social tagging data and propose novel adaptations and extensions of FolkRank to improve tag recommendations. We highlight implicit assumptions made by the widely used folksonomy model, and propose an alternative and more accurate graph-representation of the data. Our extensions of FolkRank address the new item problem by incorporating content data into the algorithm, and significantly improve prediction results on unpruned datasets. Our adaptations address issues in the iterative weight spreading calculation that potentially hinder FolkRank's ability to leverage the deep graph as an information source. Moreover, we evaluate the benefit of considering each deeper level of the graph, and present important insights regarding the characteristics of social tagging data in general. Our results suggest that the base assumption made by conventional weight propagation methods, that closeness in the graph always implies a positive relationship, does not hold for the social tagging domain.}, author = {Landia, Nikolas and Doerfel, Stephan and Jäschke, Robert and Anand, Sarabjot Singh and Hotho, Andreas and Griffiths, Nathan}, interhash = {e8095b13630452ce3ecbae582f32f4bc}, intrahash = {e585a92994be476480545eb62d741642}, journal = {cs.IR}, title = {Deeper Into the Folksonomy Graph: FolkRank Adaptations and Extensions for Improved Tag Recommendations}, url = {http://arxiv.org/abs/1310.1498}, volume = {1310.1498}, year = 2013 } @article{landia2013deeper, abstract = {The information contained in social tagging systems is often modelled as a graph of connections between users, items and tags. Recommendation algorithms such as FolkRank, have the potential to leverage complex relationships in the data, corresponding to multiple hops in the graph. We present an in-depth analysis and evaluation of graph models for social tagging data and propose novel adaptations and extensions of FolkRank to improve tag recommendations. We highlight implicit assumptions made by the widely used folksonomy model, and propose an alternative and more accurate graph-representation of the data. Our extensions of FolkRank address the new item problem by incorporating content data into the algorithm, and significantly improve prediction results on unpruned datasets. Our adaptations address issues in the iterative weight spreading calculation that potentially hinder FolkRank's ability to leverage the deep graph as an information source. Moreover, we evaluate the benefit of considering each deeper level of the graph, and present important insights regarding the characteristics of social tagging data in general. Our results suggest that the base assumption made by conventional weight propagation methods, that closeness in the graph always implies a positive relationship, does not hold for the social tagging domain.}, author = {Landia, Nikolas and Doerfel, Stephan and Jäschke, Robert and Anand, Sarabjot Singh and Hotho, Andreas and Griffiths, Nathan}, interhash = {e8095b13630452ce3ecbae582f32f4bc}, intrahash = {e585a92994be476480545eb62d741642}, journal = {cs.IR}, title = {Deeper Into the Folksonomy Graph: FolkRank Adaptations and Extensions for Improved Tag Recommendations}, url = {http://arxiv.org/abs/1310.1498}, volume = {1310.1498}, year = 2013 } @inproceedings{krause2008logsonomy, abstract = {Social bookmarking systems constitute an established part of the Web 2.0. In such systems users describe bookmarks by keywords called tags. The structure behind these social systems, called folksonomies, can be viewed as a tripartite hypergraph of user, tag and resource nodes. This underlying network shows specific structural properties that explain its growth and the possibility of serendipitous exploration. Today’s search engines represent the gateway to retrieve information from the World Wide Web. Short queries typically consisting of two to three words describe a user’s information need. In response to the displayed results of the search engine, users click on the links of the result page as they expect the answer to be of relevance. This clickdata can be represented as a folksonomy in which queries are descriptions of clicked URLs. The resulting network structure, which we will term logsonomy is very similar to the one of folksonomies. In order to find out about its properties, we analyze the topological characteristics of the tripartite hypergraph of queries, users and bookmarks on a large snapshot of del.icio.us and on query logs of two large search engines. All of the three datasets show small world properties. The tagging behavior of users, which is explained by preferential attachment of the tags in social bookmark systems, is reflected in the distribution of single query words in search engines. We can conclude that the clicking behaviour of search engine users based on the displayed search results and the tagging behaviour of social bookmarking users is driven by similar dynamics.}, address = {New York, NY, USA}, author = {Krause, Beate and Jäschke, Robert and Hotho, Andreas and Stumme, Gerd}, booktitle = {HT '08: Proceedings of the nineteenth ACM conference on Hypertext and hypermedia}, doi = {http://doi.acm.org/10.1145/1379092.1379123}, interhash = {6d34ea1823d95b9dbf37d4db4d125d2a}, intrahash = {76d81124951ae39060a8bc98f4883435}, isbn = {978-1-59593-985-2}, location = {Pittsburgh, PA, USA}, pages = {157--166}, publisher = {ACM}, title = {Logsonomy - Social Information Retrieval with Logdata}, url = {http://portal.acm.org/citation.cfm?id=1379092.1379123&coll=ACM&dl=ACM&type=series&idx=SERIES399&part=series&WantType=Journals&title=Proceedings%20of%20the%20nineteenth%20ACM%20conference%20on%20Hypertext%20and%20hypermedia}, vgwort = {17}, year = 2008 } @inproceedings{navarrobullock2011tagging, abstract = {Learning-to-rank methods automatically generate ranking functions which can be used for ordering unknown resources according to their relevance for a specific search query. The training data to construct such a model consists of features describing a document-query-pair as well as relevance scores indicating how important the document is for the query. In general, these relevance scores are derived by asking experts to manually assess search results or by exploiting user search behaviour such as click data. The human evaluation of ranking results gives explicit relevance scores, but it is expensive to obtain. Clickdata can be logged from the user interaction with a search engine, but the feedback is noisy. In this paper, we want to explore a novel source of implicit feedback for web search: tagging data. Creating relevance feedback from tagging data leads to a further source of implicit relevance feedback which helps improve the reliability of automatically generated relevance scores and therefore the quality of learning-to-rank models.}, address = {New York, NY, USA}, author = {Navarro Bullock, Beate and Jäschke, Robert and Hotho, Andreas}, booktitle = {Proceedings of the ACM WebSci Conference}, interhash = {7afaa67dfeb07f7e0b85abf2be61aff1}, intrahash = {e5a4b67ed6173e9645aab321019efd74}, location = {Koblenz, Germany}, month = jun, organization = {ACM}, pages = {1--4}, title = {Tagging data as implicit feedback for learning-to-rank}, url = {http://journal.webscience.org/463/}, vgwort = {14,8}, year = 2011 } @incollection{jaeschke2012challenges, abstract = {Originally introduced by social bookmarking systems, collaborative tagging, or social tagging, has been widely adopted by many web-based systems like wikis, e-commerce platforms, or social networks. Collaborative tagging systems allow users to annotate resources using freely chosen keywords, so called tags . Those tags help users in finding/retrieving resources, discovering new resources, and navigating through the system. The process of tagging resources is laborious. Therefore, most systems support their users by tag recommender components that recommend tags in a personalized way. The Discovery Challenges 2008 and 2009 of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) tackled the problem of tag recommendations in collaborative tagging systems. Researchers were invited to test their methods in a competition on datasets from the social bookmark and publication sharing system BibSonomy. Moreover, the 2009 challenge included an online task where the recommender systems were integrated into BibSonomy and provided recommendations in real time. In this chapter we review, evaluate and summarize the submissions to the two Discovery Challenges and thus lay the groundwork for continuing research in this area.}, address = {Berlin/Heidelberg}, affiliation = {Knowledge & Data Engineering Group, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany}, author = {Jäschke, Robert and Hotho, Andreas and Mitzlaff, Folke and Stumme, Gerd}, booktitle = {Recommender Systems for the Social Web}, doi = {10.1007/978-3-642-25694-3_3}, editor = {Pazos Arias, José J. and Fernández Vilas, Ana and Díaz Redondo, Rebeca P.}, interhash = {75b1a6f54ef54d0126d0616b5bf77563}, intrahash = {7d41d332cccc3e7ba8e7dadfb7996337}, isbn = {978-3-642-25694-3}, pages = {65--87}, publisher = {Springer}, series = {Intelligent Systems Reference Library}, title = {Challenges in Tag Recommendations for Collaborative Tagging Systems}, url = {http://dx.doi.org/10.1007/978-3-642-25694-3_3}, volume = 32, year = 2012 } @incollection{jaeschke2012challenges, abstract = {Originally introduced by social bookmarking systems, collaborative tagging, or social tagging, has been widely adopted by many web-based systems like wikis, e-commerce platforms, or social networks. Collaborative tagging systems allow users to annotate resources using freely chosen keywords, so called tags . Those tags help users in finding/retrieving resources, discovering new resources, and navigating through the system. The process of tagging resources is laborious. Therefore, most systems support their users by tag recommender components that recommend tags in a personalized way. The Discovery Challenges 2008 and 2009 of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) tackled the problem of tag recommendations in collaborative tagging systems. Researchers were invited to test their methods in a competition on datasets from the social bookmark and publication sharing system BibSonomy. Moreover, the 2009 challenge included an online task where the recommender systems were integrated into BibSonomy and provided recommendations in real time. In this chapter we review, evaluate and summarize the submissions to the two Discovery Challenges and thus lay the groundwork for continuing research in this area.}, address = {Berlin/Heidelberg}, affiliation = {Knowledge & Data Engineering Group, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany}, author = {Jäschke, Robert and Hotho, Andreas and Mitzlaff, Folke and Stumme, Gerd}, booktitle = {Recommender Systems for the Social Web}, doi = {10.1007/978-3-642-25694-3_3}, editor = {Pazos Arias, José J. and Fernández Vilas, Ana and Díaz Redondo, Rebeca P.}, interhash = {75b1a6f54ef54d0126d0616b5bf77563}, intrahash = {7d41d332cccc3e7ba8e7dadfb7996337}, isbn = {978-3-642-25694-3}, pages = {65--87}, publisher = {Springer}, series = {Intelligent Systems Reference Library}, title = {Challenges in Tag Recommendations for Collaborative Tagging Systems}, url = {http://dx.doi.org/10.1007/978-3-642-25694-3_3}, volume = 32, year = 2012 } @incollection{jaeschke2012challenges, abstract = {Originally introduced by social bookmarking systems, collaborative tagging, or social tagging, has been widely adopted by many web-based systems like wikis, e-commerce platforms, or social networks. Collaborative tagging systems allow users to annotate resources using freely chosen keywords, so called tags . Those tags help users in finding/retrieving resources, discovering new resources, and navigating through the system. The process of tagging resources is laborious. Therefore, most systems support their users by tag recommender components that recommend tags in a personalized way. The Discovery Challenges 2008 and 2009 of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) tackled the problem of tag recommendations in collaborative tagging systems. Researchers were invited to test their methods in a competition on datasets from the social bookmark and publication sharing system BibSonomy. Moreover, the 2009 challenge included an online task where the recommender systems were integrated into BibSonomy and provided recommendations in real time. In this chapter we review, evaluate and summarize the submissions to the two Discovery Challenges and thus lay the groundwork for continuing research in this area.}, address = {Berlin/Heidelberg}, affiliation = {Knowledge & Data Engineering Group, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany}, author = {Jäschke, Robert and Hotho, Andreas and Mitzlaff, Folke and Stumme, Gerd}, booktitle = {Recommender Systems for the Social Web}, doi = {10.1007/978-3-642-25694-3_3}, editor = {Pazos Arias, José J. and Fernández Vilas, Ana and Díaz Redondo, Rebeca P.}, interhash = {75b1a6f54ef54d0126d0616b5bf77563}, intrahash = {7d41d332cccc3e7ba8e7dadfb7996337}, isbn = {978-3-642-25694-3}, pages = {65--87}, publisher = {Springer}, series = {Intelligent Systems Reference Library}, title = {Challenges in Tag Recommendations for Collaborative Tagging Systems}, url = {http://dx.doi.org/10.1007/978-3-642-25694-3_3}, volume = 32, year = 2012 } @inproceedings{illig2009comparison, abstract = {Recommendation algorithms and multi-class classifiers can support users of social bookmarking systems in assigning tags to their bookmarks. Content based recommenders are the usual approach for facing the cold start problem, i.e., when a bookmark is uploaded for the first time and no information from other users can be exploited. In this paper, we evaluate several recommendation algorithms in a cold-start scenario on a large real-world dataset. }, address = {Berlin/Heidelberg}, author = {Illig, Jens and Hotho, Andreas and Jäschke, Robert and Stumme, Gerd}, booktitle = {Knowledge Processing and Data Analysis}, doi = {10.1007/978-3-642-22140-8_9}, editor = {Wolff, Karl Erich and Palchunov, Dmitry E. and Zagoruiko, Nikolay G. and Andelfinger, Urs}, interhash = {cd3420c0f73761453320dc528b3d1e14}, intrahash = {f9d6e06ab0f2fdcebb77afa97d72e40a}, isbn = {978-3-642-22139-2}, pages = {136--149}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, title = {A Comparison of Content-Based Tag Recommendations in Folksonomy Systems}, url = {http://dx.doi.org/10.1007/978-3-642-22140-8_9}, vgwort = {23}, volume = 6581, year = 2011 } @inproceedings{illig2009comparison, abstract = {Recommendation algorithms and multi-class classifiers can support users of social bookmarking systems in assigning tags to their bookmarks. Content based recommenders are the usual approach for facing the cold start problem, i.e., when a bookmark is uploaded for the first time and no information from other users can be exploited. In this paper, we evaluate several recommendation algorithms in a cold-start scenario on a large real-world dataset. }, address = {Berlin/Heidelberg}, author = {Illig, Jens and Hotho, Andreas and Jäschke, Robert and Stumme, Gerd}, booktitle = {Knowledge Processing and Data Analysis}, doi = {10.1007/978-3-642-22140-8_9}, editor = {Wolff, Karl Erich and Palchunov, Dmitry E. and Zagoruiko, Nikolay G. and Andelfinger, Urs}, interhash = {cd3420c0f73761453320dc528b3d1e14}, intrahash = {f9d6e06ab0f2fdcebb77afa97d72e40a}, isbn = {978-3-642-22139-2}, pages = {136--149}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, title = {A Comparison of Content-Based Tag Recommendations in Folksonomy Systems}, url = {http://dx.doi.org/10.1007/978-3-642-22140-8_9}, volume = 6581, year = 2011 } @inproceedings{illig2011comparison, abstract = {Recommendation algorithms and multi-class classifiers can support users of social bookmarking systems in assigning tags to their bookmarks. Content based recommenders are the usual approach for facing the cold start problem, i.e., when a bookmark is uploaded for the first time and no information from other users can be exploited. In this paper, we evaluate several recommendation algorithms in a cold-start scenario on a large real-world dataset. }, address = {Berlin/Heidelberg}, author = {Illig, Jens and Hotho, Andreas and Jäschke, Robert and Stumme, Gerd}, booktitle = {Knowledge Processing and Data Analysis}, doi = {10.1007/978-3-642-22140-8_9}, editor = {Wolff, Karl Erich and Palchunov, Dmitry E. and Zagoruiko, Nikolay G. and Andelfinger, Urs}, interhash = {cd3420c0f73761453320dc528b3d1e14}, intrahash = {f9d6e06ab0f2fdcebb77afa97d72e40a}, isbn = {978-3-642-22139-2}, pages = {136--149}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, title = {A Comparison of Content-Based Tag Recommendations in Folksonomy Systems}, url = {http://dx.doi.org/10.1007/978-3-642-22140-8_9}, volume = 6581, year = 2011 } @inproceedings{illig2011comparison, author = {Illig, Jens and Hotho, Andreas and Jäschke, Robert and Stumme, Gerd}, booktitle = {Postproceedings of the International Conference on Knowledge Processing in Practice (KPP 2007)}, interhash = {cd3420c0f73761453320dc528b3d1e14}, intrahash = {0a4a7f95efa9493d804816bb75ecbf33}, publisher = {Springer}, title = {A Comparison of content-based Tag Recommendations in Folksonomy Systems}, year = 2011 } @inproceedings{schmitz2006mining, address = {Berlin, Heidelberg}, author = {Schmitz, Christoph and Hotho, Andreas and Jäschke, Robert and Stumme, Gerd}, booktitle = {Data Science and Classification: Proc. of the 10th IFCS Conf.}, editor = {Batagelj, V. and Bock, H.-H. and Ferligoj, A. and {\v Z}iberna, A.}, interhash = {20650d852ca3b82523fcd8b63e7c12d7}, intrahash = {1e79a0f1c79561073d14434adce1e890}, pages = {261--270}, publisher = {Springer}, series = {Studies in Classification, Data Analysis, and Knowledge Organization}, title = {Mining Association Rules in Folksonomies}, year = 2006 } @inproceedings{jaeschke2008logsonomy, abstract = {In social bookmarking systems users describe bookmarksby keywords called tags. The structure behindthese social systems, called folksonomies, can beviewed as a tripartite hypergraph of user, tag and resourcenodes. This underlying network shows specificstructural properties that explain its growth and the possibilityof serendipitous exploration.Search engines filter the vast information of the web.Queries describe a user’s information need. In responseto the displayed results of the search engine, users clickon the links of the result page as they expect the answerto be of relevance. The clickdata can be represented as afolksonomy in which queries are descriptions of clickedURLs. This poster analyzes the topological characteristicsof the resulting tripartite hypergraph of queries,users and bookmarks of two query logs and compares ittwo a snapshot of the folksonomy del.icio.us.}, author = {Jäschke, Robert and Krause, Beate and Hotho, Andreas and Stumme, Gerd}, booktitle = {Proceedings of the Second International Conference on Weblogs and Social Media(ICWSM 2008)}, interhash = {13ec3f45fc7e0364cdc6b9a7c12c5c2c}, intrahash = {359e1eccdc524334d4a2ad51330f76ae}, publisher = {AAAI Press}, title = {Logsonomy -- A Search Engine Folksonomy}, url = {http://www.kde.cs.uni-kassel.de/hotho/pub/2008/Krause2008logsonomy_short.pdf}, year = 2008 } @inproceedings{hotho2006trend, abstract = {As the number of resources on the web exceeds by far the number ofdocuments one can track, it becomes increasingly difficult to remainup to date on ones own areas of interest. The problem becomes moresevere with the increasing fraction of multimedia data, from whichit is difficult to extract some conceptual description of theircontents.One way to overcome this problem are social bookmark tools, whichare rapidly emerging on the web. In such systems, users are settingup lightweight conceptual structures called folksonomies, andovercome thus the knowledge acquisition bottleneck. As more and morepeople participate in the effort, the use of a common vocabularybecomes more and more stable. We present an approach for discoveringtopic-specific trends within folksonomies. It is based on adifferential adaptation of the PageRank algorithm to the triadichypergraph structure of a folksonomy. The approach allows for anykind of data, as it does not rely on the internal structure of thedocuments. In particular, this allows to consider different datatypes in the same analysis step. We run experiments on a large-scalereal-world snapshot of a social bookmarking system.}, address = {Heidelberg}, author = {Hotho, Andreas and Jäschke, Robert and Schmitz, Christoph and Stumme, Gerd}, booktitle = {Proc. First International Conference on Semantics And Digital Media Technology (SAMT) }, editor = {Avrithis, Yannis S. and Kompatsiaris, Yiannis and Staab, Steffen and O'Connor, Noel E.}, ee = {http://dx.doi.org/10.1007/11930334_5}, interhash = {227be738c5cea57530d592463fd09abd}, intrahash = {42cda5911e901eadd0ac6a106a6aa1dc}, isbn = {3-540-49335-2}, month = {December}, pages = {56-70}, publisher = {Springer}, series = {LNCS}, title = {Trend Detection in Folksonomies}, url = {http://www.kde.cs.uni-kassel.de/stumme/papers/2006/hotho2006trend.pdf}, vgwort = {27}, volume = 4306, year = 2006 } @inproceedings{jaeschke06trias, address = {Hong Kong}, author = {Jäschke, Robert and Hotho, Andreas and Schmitz, Christoph and Ganter, Bernhard and Stumme, Gerd}, booktitle = {Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 06)}, doi = {http://doi.ieeecomputersociety.org/10.1109/ICDM.2006.162}, interhash = {b4964c3bdd2991a80873d7080ef6a73e}, intrahash = {e387c294129e11f4221514d5fa807e26}, isbn = {0-7695-2701-9}, issn = {1550-4786}, month = {December}, pages = {907-911}, publisher = {IEEE Computer Society}, title = {TRIAS - An Algorithm for Mining Iceberg Tri-Lattices}, url = {http://www.kde.cs.uni-kassel.de/stumme/papers/2006/jaeschke2006trias.pdf}, vgwort = {19}, year = 2006 }