@inproceedings{jaeschke2007tag, abstract = {Collaborative tagging systems allow users to assign keywords—so called “tags”—to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied. In this paper we evaluate and compare two recommendation algorithms on largescale real life datasets: an adaptation of user-based collaborative filtering and a graph-based recommender built on top of FolkRank. We show that both provide better results than non-personalized baseline methods. Especially the graph-based recommender outperforms existing methods considerably.}, address = {Berlin, Heidelberg}, author = {Jäschke, Robert and Balby Marinho, Leandro and Hotho, Andreas and Schmidt-Thieme, Lars and Stumme, Gerd}, booktitle = {Knowledge Discovery in Databases: PKDD 2007, 11th European Conference on Principles and Practice of Knowledge Discovery in Databases}, editor = {Kok, Joost N. and Koronacki, Jacek and de Mántaras, Ramon López and Matwin, Stan and Mladenic, Dunja and Skowron, Andrzej}, ee = {http://dx.doi.org/10.1007/978-3-540-74976-9_52}, interhash = {7e212e3bac146d406035adebff248371}, intrahash = {bb8ecec699a2f129322fe334747c6aef}, isbn = {978-3-540-74975-2}, pages = {506-514}, publisher = {Springer}, series = {Lecture Notes in Computer Science}, title = {Tag Recommendations in Folksonomies}, url = {http://dx.doi.org/10.1007/978-3-540-74976-9_52}, vgwort = {14}, volume = 4702, year = 2007 } @inproceedings{rendle2009learning, abstract = {Tag recommendation is the task of predicting a personalized list of tags for a user given an item. This is important for many websites with tagging capabilities like last.fm or delicious. In this paper, we propose a method for tag recommendation based on tensor factorization (TF). In contrast to other TF methods like higher order singular value decomposition (HOSVD), our method RTF ('ranking with tensor factorization') directly optimizes the factorization model for the best personalized ranking. RTF handles missing values and learns from pairwise ranking constraints. Our optimization criterion for TF is motivated by a detailed analysis of the problem and of interpretation schemes for the observed data in tagging systems. In all, RTF directly optimizes for the actual problem using a correct interpretation of the data. We provide a gradient descent algorithm to solve our optimization problem. We also provide an improved learning and prediction method with runtime complexity analysis for RTF. The prediction runtime of RTF is independent of the number of observations and only depends on the factorization dimensions. Besides the theoretical analysis, we empirically show that our method outperforms other state-of-the-art tag recommendation methods like FolkRank, PageRank and HOSVD both in quality and prediction runtime.}, address = {New York, NY, USA}, author = {Rendle, Steffen and Marinho, Leandro Balby and Nanopoulos, Alexandros and Schmidt-Thieme, Lars}, booktitle = {KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining}, doi = {10.1145/1557019.1557100}, interhash = {1cc85ca2ec82db2a3caf40fd1795a58a}, intrahash = {1bd672ffb8d6ba5589bb0c7deca09412}, isbn = {978-1-60558-495-9}, location = {Paris, France}, pages = {727--736}, publisher = {ACM}, title = {Learning optimal ranking with tensor factorization for tag recommendation}, url = {http://portal.acm.org/citation.cfm?doid=1557019.1557100}, year = 2009 }