Disambiguating toponyms in news
, und .
Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, Seite 363--370. Stroudsburg, PA, USA, Association for Computational Linguistics, (2005)

This research is aimed at the problem of disambiguating toponyms (place names) in terms of a classification derived by merging information from two publicly available gazetteers. To establish the difficulty of the problem, we measured the degree of ambiguity, with respect to a gazetteer, for toponyms in news. We found that 67.82% of the toponyms found in a corpus that were ambiguous in a gazetteer lacked a local discriminator in the text. Given the scarcity of human-annotated data, our method used unsupervised machine learning to develop disambiguation rules. Toponyms were automatically tagged with information about them found in a gazetteer. A toponym that was ambiguous in the gazetteer was automatically disambiguated based on preference heuristics. This automatically tagged data was used to train a machine learner, which disambiguated toponyms in a human-annotated news corpus at 78.5% accuracy.
  • @jaeschke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.