@jaeschke

Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments

, , , und . 17th Conference on Uncertainty in Artificial Intelligence, Seite 437--444. Seattle, Washington, (August 2001)

Zusammenfassung

Recommender systems leverage product and community information to target products to consumers. Researchers have developed collaborative recommenders, content-based recommenders, and a few hybrid systems. We propose a unified probabilistic framework for merging collaborative and content-based recommendations. We extend Hofmann's aspect model to incorporate three-way co-occurrence data among users, items, and item content. The relative influence of collaboration data versus content data is not...

Beschreibung

Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments - Popescul, Ungar, Pennock, Lawrence (ResearchIndex)

Links und Ressourcen

URL:
BibTeX-Schlüssel:
popescul01probabilistic
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation