Topic Significance Ranking of LDA Generative Models
, , , und .
Machine Learning and Knowledge Discovery in Databases (2009)

Topic models, like Latent Dirichlet Allocation (LDA), have been recently used to automatically generate text corpora topics, and to subdivide the corpus words among those topics. However, not all the estimated topics are of equal importance or correspondto genuine themes of the domain. Some of the topics can be a collection of irrelevant words, or represent insignificant themes.Current approaches to topic modeling perform manual examination to find meaningful topics. This paper presents the first automatedunsupervised analysis of LDA models to identify junk topics from legitimate ones, and to rank the topic significance. Basically,the distance between a topic distribution and three definitions of “junk distribution” is computed using a variety of measures,from which an expressive figure of the topic significance is implemented using 4-phase Weighted Combination approach. Ourexperiments on synthetic and benchmark datasets show the effectiveness of the proposed approach in ranking the topic significance.
  • @folke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.