PBN: towards practical activity recognition using smartphone-based body sensor networks

Matthew Keally, Gang Zhou, Guoliang Xing, Jianxin Wu, und Andrew Pyles. Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems, Seite 246--259. New York, NY, USA, ACM, (2011)


The vast array of small wireless sensors is a boon to body sensor network applications, especially in the context awareness and activity recognition arena. However, most activity recognition deployments and applications are challenged to provide personal control and practical functionality for everyday use. We argue that activity recognition for mobile devices must meet several goals in order to provide a practical solution: user friendly hardware and software, accurate and efficient classification, and reduced reliance on ground truth. To meet these challenges, we present PBN: Practical Body Networking. Through the unification of TinyOS motes and Android smartphones, we combine the sensing power of on-body wireless sensors with the additional sensing power, computational resources, and user-friendly interface of an Android smartphone. We provide an accurate and efficient classification approach through the use of ensemble learning. We explore the properties of different sensors and sensor data to further improve classification efficiency and reduce reliance on user annotated ground truth. We evaluate our PBN system with multiple subjects over a two week period and demonstrate that the system is easy to use, accurate, and appropriate for mobile devices.



Links und Ressourcen

Interner Link:
Sie können diesen internen Link benutzen, um diesen Eintrag in Ihren Diskussionen zu referenzieren. Sie müssen nur diesen Link kopieren und in den Text zu ihrer Diskussion hinzufügen.
Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation