@hotho

Cubic Analysis of Social Bookmarking for Personalized Recommendation

, , und . Frontiers of WWW Research and Development - APWeb 2006 (2006)

Zusammenfassung

Personalized recommendation is used to conquer the information overload problem, and collaborative filtering recommendation (CF) is one of the most successful recommendation techniques to date. However, CF becomes less effective when users have multiple interests, because users have similar taste in one aspect may behave quite different in other aspects. Information got from social bookmarking websites not only tells what a user likes, but also why he or she likes it. This paper proposes a division algorithm and a CubeSVD algorithm to analysis this information, distill the interrelations between different users’ various interests, and make better personalized recommendation based on them. Experiment reveals the superiority of our method over traditional CF methods. ER -

Beschreibung

SpringerLink - Book Chapter

Links und Ressourcen

URL:
BibTeX-Schlüssel:
keyhere
Suchen auf:

Kommentare und Rezensionen  
(0)

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!

Tags


Zitieren Sie diese Publikation