Information visualization is essential in making sense out of large data sets. Often, high-dimensional data are visualized as a collection of points in 2-dimensional space through dimensionality reduction techniques. However, these traditional methods often do not capture well the underlying structural information, clustering, and neighborhoods. In this paper, we describe GMap: a practical tool for visualizing relational data with geographic-like maps. We illustrate the effectiveness of this approach with examples from several domains All the maps referenced in this paper can be found in http://www.research.att.com/~yifanhu/GMap

Links und Ressourcen

Suchen auf:

Kommentare und Rezensionen  

Es gibt bisher keine Rezension oder Kommentar. Sie können eine schreiben!


Zitieren Sie diese Publikation