Clustering Categorical Data: An Approach Based on Dynamical Systems
, , und .
Seite 311--322. (1998)

We describe a novel approach for clustering collections of sets, and its application to the analysis and mining of categorical data. By "categorical data," we mean tables with fields that cannot be naturally ordered by a metric --- e.g., the names of producers of automobiles, or the names of products offered by a manufacturer. Our approach is based on an iterative method for assigning and propagating weights on the categorical values in a table; this facilitates a type of similarity measure arising from the cooccurrence of values in the dataset. Our techniques can be studied analytically in terms of certain types of non-linear dynamical systems. We discuss experiments on a variety of tables of synthetic and real data; we find that our iterative methods converge quickly to prominently correlated values of various categorical fields. 1 Introduction Much of the data in databases is categorical: fields in tables whose attributes cannot naturally be ordered as numerical values can. The pro...
  • @folke
Diese Publikation wurde noch nicht bewertet.

Durchschnittliche Benutzerbewertung0,0 von 5.0 auf Grundlage von 0 Rezensionen
    Bitte melden Sie sich an um selbst Rezensionen oder Kommentare zu erstellen.