@article{pham2011development, abstract = {In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published Journal Citation Report (JCR). Although this data cover most of the important journals, it lacks computer science conference and workshop proceedings, which results in an imprecise and incomplete analysis of the computer science knowledge. This paper presents an analysis on the computer science knowledge network constructed from all types of publications, aiming at providing a complete view of computer science research. Based on the combination of two important digital libraries (DBLP and CiteSeerX), we study the knowledge network created at journal/conference level using citation linkage, to identify the development of sub-disciplines. We investigate the collaborative and citation behavior of journals/conferences by analyzing the properties of their co-authorship and citation subgraphs. The paper draws several important conclusions. First, conferences constitute social structures that shape the computer science knowledge. Second, computer science is becoming more interdisciplinary. Third, experts are the key success factor for sustainability of journals/conferences.}, address = {Wien}, affiliation = {Information Systems and Database Technology, RWTH Aachen University, Aachen, Ahornstr. 55, 52056 Aachen, Germany}, author = {Pham, Manh and Klamma, Ralf and Jarke, Matthias}, doi = {10.1007/s13278-011-0024-x}, interhash = {193312234ed176aa8be9f35d4d1c4e72}, intrahash = {8ae08cacda75da80bfa5604cfce48449}, issn = {1869-5450}, journal = {Social Network Analysis and Mining}, keyword = {Computer Science}, number = 4, pages = {321--340}, publisher = {Springer}, title = {Development of computer science disciplines: a social network analysis approach}, url = {http://dx.doi.org/10.1007/s13278-011-0024-x}, volume = 1, year = 2011 } @inproceedings{2010-KI-KHP, abstract = {The accurate extraction of scholarly reference information from scientific publications is essential for many useful applications like BibTeX management systems or citation analysis. Automatic extraction methods suffer from the heterogeneity of reference notation, no matter wether the extraction model was handcrafted or learnt from labeled data. However, references of the same paper or journal are usually homogeneous. We exploit this local consistency with a novel approach. Given some initial information from such a reference section, we try to derived generalized patterns. These patterns are used to create a local model of the current document. The local model helps to identify errors and to improve the extracted information incrementally during the extraction process. Our approach is implemented with handcrafted transformation rules working on a meta-level being able to correct the information independent of the applied layout style. The experimental results compete very well with the state of the art methods and show an extremely high performance on consistent reference sections. }, author = {Kluegl, Peter and Hotho, Andreas and Puppe, Frank}, booktitle = {KI 2010: Advances in Artificial Intelligence, 33rd Annual German Conference on AI}, editor = {Dillmann, Rüdiger and Beyerer, Jürgen and Hanebeck, Uwe D. and Schultz, Tanja}, interhash = {b6a5b2a32346b60eac912ee96e681dce}, intrahash = {174791d9668705cbf0052224694f5366}, isbn = {978-3-642-16110-0}, pages = {40-47}, publisher = {Springer}, series = { LNAI 6359}, title = {Local Adaptive Extraction of References}, url = {http://ki.informatik.uni-wuerzburg.de/papers/pkluegl/2010-KI-LAER.pdf}, year = 2010 }