@article{landia2013deeper, abstract = {The information contained in social tagging systems is often modelled as a graph of connections between users, items and tags. Recommendation algorithms such as FolkRank, have the potential to leverage complex relationships in the data, corresponding to multiple hops in the graph. We present an in-depth analysis and evaluation of graph models for social tagging data and propose novel adaptations and extensions of FolkRank to improve tag recommendations. We highlight implicit assumptions made by the widely used folksonomy model, and propose an alternative and more accurate graph-representation of the data. Our extensions of FolkRank address the new item problem by incorporating content data into the algorithm, and significantly improve prediction results on unpruned datasets. Our adaptations address issues in the iterative weight spreading calculation that potentially hinder FolkRank's ability to leverage the deep graph as an information source. Moreover, we evaluate the benefit of considering each deeper level of the graph, and present important insights regarding the characteristics of social tagging data in general. Our results suggest that the base assumption made by conventional weight propagation methods, that closeness in the graph always implies a positive relationship, does not hold for the social tagging domain.}, author = {Landia, Nikolas and Doerfel, Stephan and Jäschke, Robert and Anand, Sarabjot Singh and Hotho, Andreas and Griffiths, Nathan}, interhash = {e8095b13630452ce3ecbae582f32f4bc}, intrahash = {e585a92994be476480545eb62d741642}, journal = {cs.IR}, title = {Deeper Into the Folksonomy Graph: FolkRank Adaptations and Extensions for Improved Tag Recommendations}, url = {http://arxiv.org/abs/1310.1498}, volume = {1310.1498}, year = 2013 } @inproceedings{Doerfel:2012:LPM:2365934.2365937, abstract = {The ever-growing flood of new scientific articles requires novel retrieval mechanisms. One means for mitigating this instance of the information overload phenomenon are collaborative tagging systems, that allow users to select, share and annotate references to publications. These systems employ recommendation algorithms to present to their users personalized lists of interesting and relevant publications. In this paper we analyze different ways to incorporate social data and metadata from collaborative tagging systems into the graph-based ranking algorithm FolkRank to utilize it for recommending scientific articles to users of the social bookmarking system BibSonomy. We compare the results to those of Collaborative Filtering, which has previously been applied for resource recommendation.}, acmid = {2365937}, address = {New York, NY, USA}, author = {Doerfel, Stephan and Jäschke, Robert and Hotho, Andreas and Stumme, Gerd}, booktitle = {Proceedings of the 4th ACM RecSys workshop on Recommender systems and the social web}, doi = {10.1145/2365934.2365937}, interhash = {beb2c81daf975eeed6e01e1b412196b1}, intrahash = {e5c2266da34a9167352615827cc4670d}, isbn = {978-1-4503-1638-5}, location = {Dublin, Ireland}, numpages = {8}, pages = {9--16}, publisher = {ACM}, series = {RSWeb '12}, title = {Leveraging publication metadata and social data into FolkRank for scientific publication recommendation}, url = {http://doi.acm.org/10.1145/2365934.2365937}, year = 2012 } @book{balbymarinho2012recommender, abstract = {Social Tagging Systems are web applications in which users upload resources (e.g., bookmarks, videos, photos, etc.) and annotate it with a list of freely chosen keywords called tags. This is a grassroots approach to organize a site and help users to find the resources they are interested in. Social tagging systems are open and inherently social; features that have been proven to encourage participation. However, with the large popularity of these systems and the increasing amount of user-contributed content, information overload rapidly becomes an issue. Recommender Systems are well known applications for increasing the level of relevant content over the “noise” that continuously grows as more and more content becomes available online. In social tagging systems, however, we face new challenges. While in classic recommender systems the mode of recommendation is basically the resource, in social tagging systems there are three possible modes of recommendation: users, resources, or tags. Therefore suitable methods that properly exploit the different dimensions of social tagging systems data are needed. In this book, we survey the most recent and state-of-the-art work about a whole new generation of recommender systems built to serve social tagging systems. The book is divided into self-contained chapters covering the background material on social tagging systems and recommender systems to the more advanced techniques like the ones based on tensor factorization and graph-based models.}, author = {Balby Marinho, L. and Hotho, A. and Jäschke, R. and Nanopoulos, A. and Rendle, S. and Schmidt-Thieme, L. and Stumme, G. and Symeonidis, P.}, interhash = {0bb7f0588cd690d67cc73e219a3a24fa}, intrahash = {87d6883ebd98e8810be45d7e7e4ade96}, isbn = {978-1-4614-1893-1}, month = feb, publisher = {Springer}, series = {SpringerBriefs in Electrical and Computer Engineering}, title = {Recommender Systems for Social Tagging Systems}, url = {http://www.springer.com/computer/database+management+%26+information+retrieval/book/978-1-4614-1893-1}, year = 2012 } @incollection{jaeschke2012challenges, abstract = {Originally introduced by social bookmarking systems, collaborative tagging, or social tagging, has been widely adopted by many web-based systems like wikis, e-commerce platforms, or social networks. Collaborative tagging systems allow users to annotate resources using freely chosen keywords, so called tags . Those tags help users in finding/retrieving resources, discovering new resources, and navigating through the system. The process of tagging resources is laborious. Therefore, most systems support their users by tag recommender components that recommend tags in a personalized way. The Discovery Challenges 2008 and 2009 of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD) tackled the problem of tag recommendations in collaborative tagging systems. Researchers were invited to test their methods in a competition on datasets from the social bookmark and publication sharing system BibSonomy. Moreover, the 2009 challenge included an online task where the recommender systems were integrated into BibSonomy and provided recommendations in real time. In this chapter we review, evaluate and summarize the submissions to the two Discovery Challenges and thus lay the groundwork for continuing research in this area.}, address = {Berlin/Heidelberg}, affiliation = {Knowledge & Data Engineering Group, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany}, author = {Jäschke, Robert and Hotho, Andreas and Mitzlaff, Folke and Stumme, Gerd}, booktitle = {Recommender Systems for the Social Web}, doi = {10.1007/978-3-642-25694-3_3}, editor = {Pazos Arias, José J. and Fernández Vilas, Ana and Díaz Redondo, Rebeca P.}, interhash = {75b1a6f54ef54d0126d0616b5bf77563}, intrahash = {7d41d332cccc3e7ba8e7dadfb7996337}, isbn = {978-3-642-25694-3}, pages = {65--87}, publisher = {Springer}, series = {Intelligent Systems Reference Library}, title = {Challenges in Tag Recommendations for Collaborative Tagging Systems}, url = {http://dx.doi.org/10.1007/978-3-642-25694-3_3}, volume = 32, year = 2012 } @phdthesis{jschke2011formal, address = {[Amsterdam]}, author = {Jäschke, Robert}, interhash = {dcb2cd1cd72ae45d77c4d8755d199405}, intrahash = {1ac91a922a872523de0ce8d4984e53a3}, isbn = {9781607507079 1607507072 9783898383325 3898383326}, pages = {--}, publisher = {IOS Press}, refid = {707172013}, title = {Formal concept analysis and tag recommendations in collaborative tagging systems}, url = {http://www.worldcat.org/search?qt=worldcat_org_all&q=9783898383325}, year = 2011 } @phdthesis{bogers2009recommender, abstract = {Recommender systems belong to a class of personalized information filtering technologies that aim to identify which items in a collection might be of interest to a particular user. Recommendations can be made using a variety of information sources related to both the user and the items: past user preferences, demographic information, item popularity, the metadata characteristics of the products, etc. Social bookmarking websites, with their emphasis on open collaborative information access, offer an ideal scenario for the application of recommender systems technology. They allow users to manage their favorite bookmarks online through a web interface and, in many cases, allow their users to tag the content they have added to the system with keywords. The underlying application then makes all information sharable among users. Examples of social bookmarking services include Delicious, Diigo, Furl, CiteULike, and BibSonomy. In my Ph.D. thesis I describe the work I have done on item recommendation for social bookmarking, i.e., recommending interesting bookmarks to users based on the content they bookmarked in the past. In my experiments I distinguish between two types of information sources. The first one is usage data contained in the folksonomy, which represents the past selections and transactions of all users, i.e., who added which items, and with what tags. The second information source is the metadata describing the bookmarks or articles on a social bookmarking website, such as title, description, authorship, tags, and temporal and publication-related metadata. I compare and combine the content-based aspect with the more common usage-based approaches. I evaluate my approaches on four data sets constructed from three different social bookmarking websites: BibSonomy, CiteULike, and Delicious. In addition, I investigate different combination methods for combining different algorithms and show which of those methods can successfully improve recommendation performance. Finally, I consider two growing pains that accompany the maturation of social bookmarking websites: spam and duplicate content. I examine how widespread each of these problems are for social bookmarking and how to develop effective automatic methods for detecting such unwanted content. Finally, I investigate the influence spam and duplicate content can have on item recommendation. }, address = {Tilburg, The Netherlands}, author = {Bogers, Toine}, interhash = {65b74dcabaa583a48469f3dec2ec1f62}, intrahash = {b02daac1201473600b7c8d2553865b4a}, month = dec, school = {Tilburg University}, title = {Recommender Systems for Social Bookmarking}, url = {http://ilk.uvt.nl/~toine/phd-thesis/}, year = 2009 } @article{jaeschke2008tag, abstract = {Collaborative tagging systems allow users to assign keywords - so called "tags" - to resources. Tags are used for navigation, finding resources and serendipitous browsing and thus provide an immediate benefit for users. These systems usually include tag recommendation mechanisms easing the process of finding good tags for a resource, but also consolidating the tag vocabulary across users. In practice, however, only very basic recommendation strategies are applied. In this paper we evaluate and compare several recommendation algorithms on large-scale real life datasets: an adaptation of user-based collaborative filtering, a graph-based recommender built on top of the FolkRank algorithm, and simple methods based on counting tag occurences. We show that both FolkRank and Collaborative Filtering provide better results than non-personalized baseline methods. Moreover, since methods based on counting tag occurrences are computationally cheap, and thus usually preferable for real time scenarios, we discuss simple approaches for improving the performance of such methods. We show, how a simple recommender based on counting tags from users and resources can perform almost as good as the best recommender. }, address = {Amsterdam}, author = {Jäschke, Robert and Marinho, Leandro and Hotho, Andreas and Schmidt-Thieme, Lars and Stumme, Gerd}, doi = {10.3233/AIC-2008-0438}, editor = {Giunchiglia, Enrico}, interhash = {b2f1aba6829affc85d852ea93a8e39f7}, intrahash = {955bcf14f3272ba6eaf3dadbef6c0b10}, issn = {0921-7126}, journal = {AI Communications}, number = 4, pages = {231-247}, publisher = {IOS Press}, title = {Tag Recommendations in Social Bookmarking Systems}, url = {http://dx.doi.org/10.3233/AIC-2008-0438}, vgwort = {63}, volume = 21, year = 2008 } @inproceedings{1458098, address = {New York, NY, USA}, author = {Song, Yang and Zhang, Lu and Giles, C. Lee}, booktitle = {CIKM '08: Proceeding of the 17th ACM conference on Information and knowledge mining}, doi = {http://doi.acm.org/10.1145/1458082.1458098}, interhash = {5c03bc1e658b6d44f053944418bdaec3}, intrahash = {d330a3537b4a14fbd40661424ec8e465}, isbn = {978-1-59593-991-3}, location = {Napa Valley, California, USA}, pages = {93--102}, publisher = {ACM}, title = {A sparse gaussian processes classification framework for fast tag suggestions}, url = {http://portal.acm.org/citation.cfm?id=1458098}, year = 2008 } @inproceedings{jaeschke07tagKdml, author = {Jäschke, Robert and Marinho, Leandro and Hotho, Andreas and Schmidt-Thieme, Lars and Stumme, Gerd}, booktitle = {Workshop Proceedings of Lernen - Wissensentdeckung - Adaptivität (LWA 2007)}, editor = {Hinneburg, Alexander}, interhash = {7e212e3bac146d406035adebff248371}, intrahash = {bfc43dfe59f9c0935ac3364b12e6d795}, isbn = {978-3-86010-907-6}, month = sep, pages = {13-20}, publisher = {Martin-Luther-Universität Halle-Wittenberg}, title = {Tag Recommendations in Folksonomies}, url = {http://www.kde.cs.uni-kassel.de/hotho/pub/2007/kdml_recommender_final.pdf}, vgwort = {20}, year = 2007 } @inproceedings{Byde2007, abstract = {This short paper describes a novel technique for generating personalized tag recommendations for users of social book- marking sites such as del.icio.us. Existing techniques recom- mend tags on the basis of their popularity among the group of all users; on the basis of recent use; or on the basis of simple heuristics to extract keywords from the url being tagged. Our method is designed to complement these approaches, and is based on recommending tags from urls that are similar to the one in question, according to two distinct similarity metrics, whose principal utility covers complementary cases.}, author = {Byde, Andrew and Wan, Hui and Cayzer, Steve}, booktitle = {Proceedings of the International Conference on Weblogs and Social Media}, interhash = {38aaca7e5b9c508a5901f4109dabaa69}, intrahash = {157846898c1c2a65c265a913ebac115a}, month = {March}, priority = {5}, title = {Personalized Tag Recommendations via Tagging and Content-based Similarity Metrics}, url = {http://www.icwsm.org/papers/paper47.html}, year = 2007 } @article{keyhere, abstract = {Personalized recommendation is used to conquer the information overload problem, and collaborative filtering recommendation (CF) is one of the most successful recommendation techniques to date. However, CF becomes less effective when users have multiple interests, because users have similar taste in one aspect may behave quite different in other aspects. Information got from social bookmarking websites not only tells what a user likes, but also why he or she likes it. This paper proposes a division algorithm and a CubeSVD algorithm to analysis this information, distill the interrelations between different users’ various interests, and make better personalized recommendation based on them. Experiment reveals the superiority of our method over traditional CF methods. ER -}, author = {Xu, Yanfei and Zhang, Liang and Liu, Wei}, interhash = {edf999afa5a0ff81e53b0c859b466659}, intrahash = {5fbd24f07fe8784b516e69b0eb3192f3}, journal = {Frontiers of WWW Research and Development - APWeb 2006}, pages = {733--738}, title = {Cubic Analysis of Social Bookmarking for Personalized Recommendation}, url = {http://dx.doi.org/10.1007/11610113_66}, year = 2006 }